

Brandenburgische Technische Universität Cottbus

JOINTLAE

Rod-like defects in silicon: signatures of distinct RLD structures detected by various measurement methods

T. Mchedlidze

IHP/BTU JointLab, BTU Cottbus

Starting remarks

<u>History</u>

1991~1992 and 2002~2003, IMR Sendai From 2005, JointLab, Cottbus

Publications

• T. Mchedlidze, V. V. Kveder, J. Jablonski, and K. Sumino, Phys. Rev. B **50**, 1511 (1994).

- T. Mchedlidze and M. Suezawa, Phys. Rev. B 70, 205203 (2004).
- T. Mchedlidze, S. Binetti, A. Le Donne, S. Pizzini and M. Suezawa, J. Appl. Phys. **98**, 043507 (2005).

• T. Mchedlidze, S. Binetti, A. Le Donne, S. Pizzini and M. Suezawa, Phys. Stat. Sol. (c) **2**, 1807 (2005).

Acknowledgements

Cordial thanks are due to:

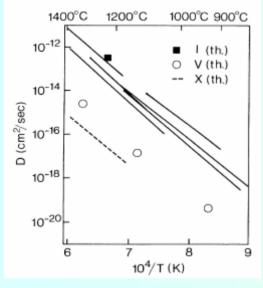
Vitaly V. Kveder Koji Sumino Masashi Suezawa

Outline

Reviewing what was known

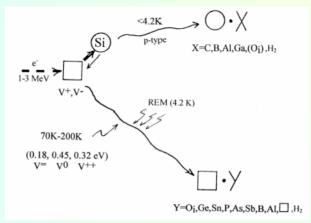
- Interstitial agglomerates in Si
- Transmission electron microscopy
- Theoretical calculations
- Photoluminescence and deep level transient spectroscopy
- Electric-dipole spin resonance

Experimental


- Samples, measurement technique
- Signatures of rod-like defects
 - Deep level transient spectroscopy
 - Photoluminescence

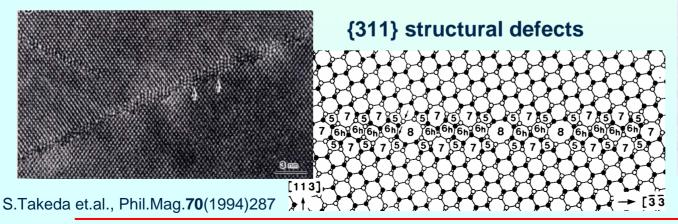
Summary

Self-interstitials in Si



Diffusion processes (TED)

P.E. Blochl et al., PRL 70(1993)2435


Defect reactions

G.D. Watkins, Mat. Sci. in Semicond. Processing **3**(2000)227 Thermal donors in silicon: oxygen clusters or selfinterstitial aggregates?

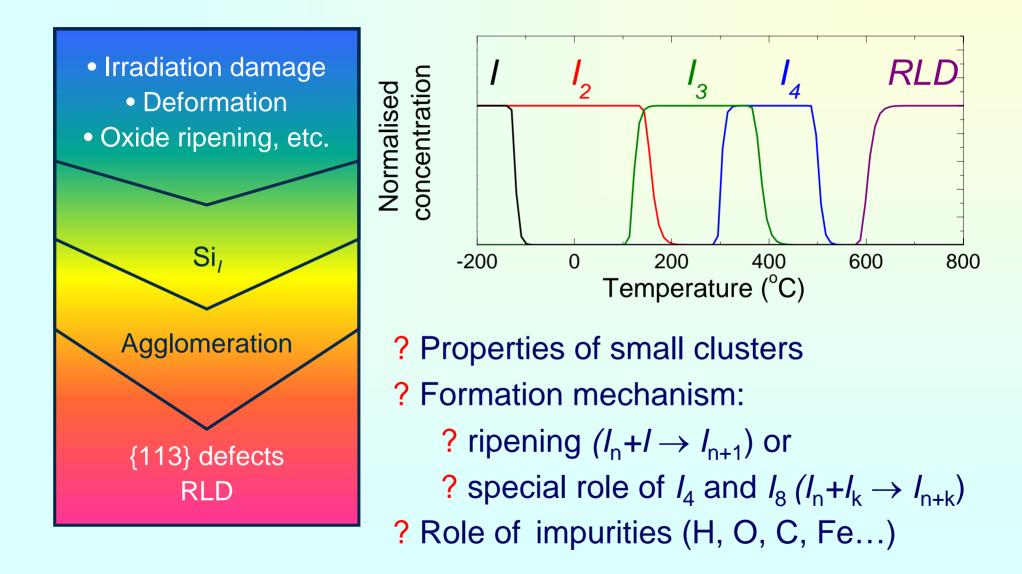
R.C. Newman, J.Phys.C: Sol.St.Phys.18(1985)L967

Rod-like defects

IHP/BTU Jointlab, Cottbus, Germany

www.jointlab.de

EDS 2006, Halle, Germany


um

© 2006 - All rights reserved

T.Mchedlidze et al., PRB 50(1994)1511

lµm

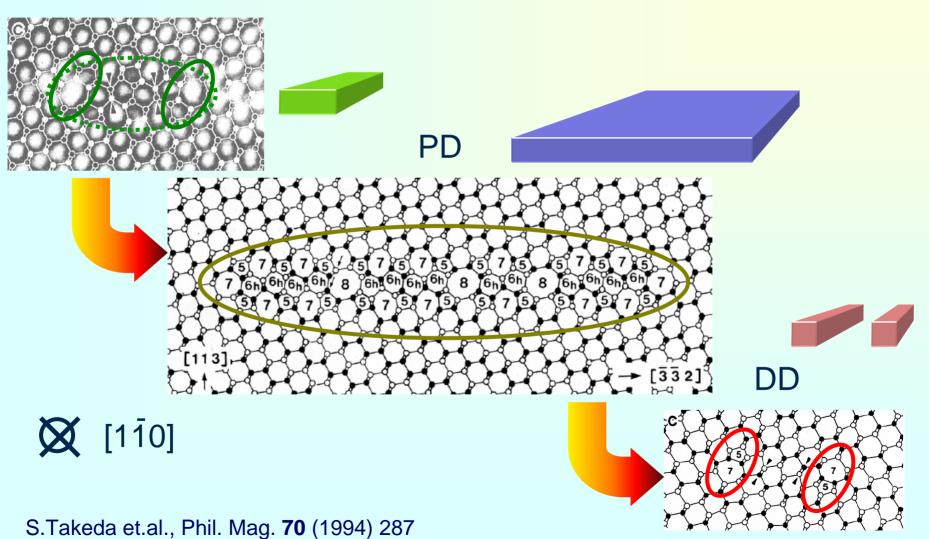
Formation of self-interstitial agglomerates

Theoretical calculations:

- B. J. Coomer, et. al., J.Phys.: Condens. Matter 13, L1 (2001).
- P. Alippi and L. Colombo, Phys. Rev. B 62, 1815 (2000).
- J. Kim, et. al., Phys. Rev. Lett., 84, 503 (2000).
- J. P. Goss, et. al., Appl. Phys. Lett., 85, 4633 (2004).

Transmission electron microscopy:

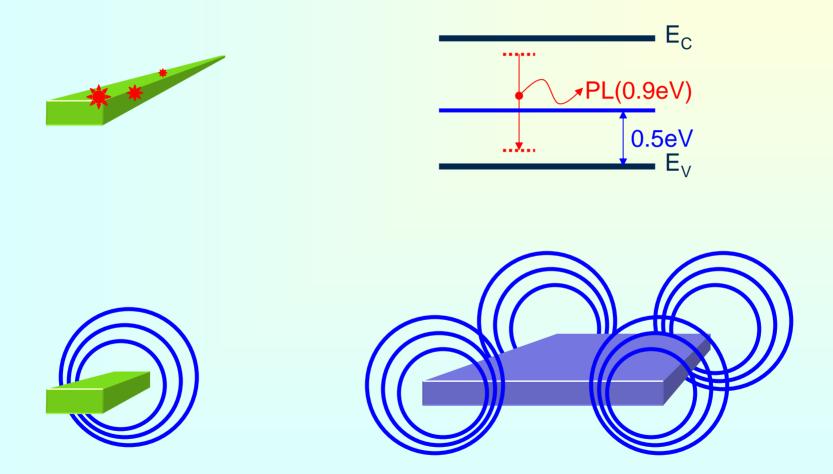
- S. Takeda, Jpn. J. Appl. Phys. **30**, L639 (1991);
- M. Kohyama and S. Takeda, Phys. Rev. B 46, 12 305 (1992).
- Electrical and optical investigations:
 - J. L Benton, S. Libertino, S. Coffa, et. al., Appl. Phys. Lett., 71, 389 (1997); J. Appl. Phys., 82, 120 (1997); J. Appl. Phys., 84, 4749 (1998); Phys. Rev. B, 63, 195206 (2001).
 - P. K Giri, Semicond. Sci. and Technol., **20**, 638 (2005).


Spin resonance investigations:

- T. Mchedlidze, et. al., Phys. Rev. B 50, 1511 (1994).
- D. Pierreux and A. Stesmans, Phys. Rev. B 68, 193208 (2003).
- T. Mchedlidze and M. Suezawa, Phys. Rev. B, 70, 205203 (2004).
- T. Mchedlidze, et. al., J. Appl. Phys. 98, 043507 (2005).

RLD – {113} structural defects - TEM

LID



IHP/BTU Jointlab, Cottbus, Germany

EDS 2006, Halle, Germany

© 2006 - All rights reserved

RLD – {113} structural defects - theory

J. P. Goss, et. al., Appl. Phys. Lett., **85**, 4633 (2004).

RLD – {113} structural defects – DLTS, PL

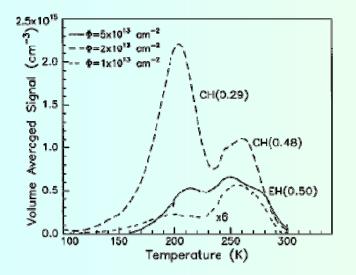
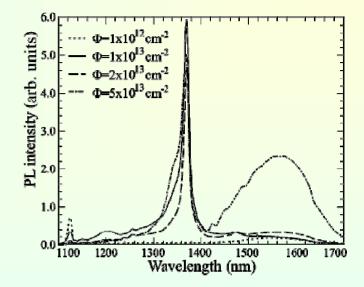
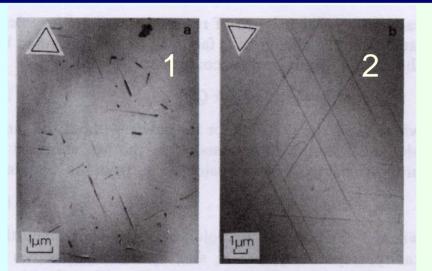


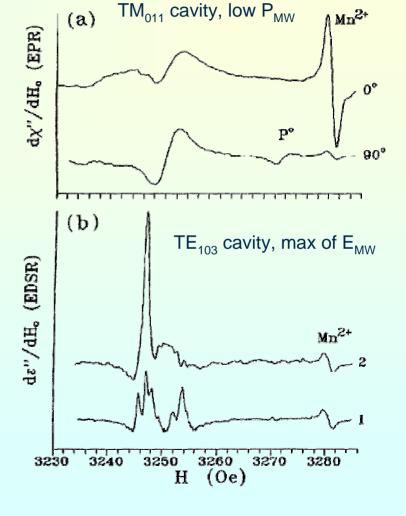
FIG. 5. DLTS spectra after 145 keV Si ion implantation and thermal anneal of 685 °C, 1 h. The concentration of cluster defects increases as the dose is raised from 1×10^{13} to 2×10^{13} Si/cm². At a fluence of 5×10^{13} Si/cm², the total concentration of cluster defects is dramatically reduced and the extended defect signature, EH(0.50 eV), is observed.




FIG. 18. PL spectra taken at 17 K on *n*-type Si samples implanted with 1.2 MeV Si to doses of $1 \times 10^{12} \text{ cm}^{-2}$ (dotted line), $1 \times 10^{13} \text{ cm}^{-2}$ (solid line), $2 \times 10^{13} \text{ cm}^{-2}$ (dashed line), and $5 \times 10^{13} \text{ cm}^{-2}$ (dash-dot-dashed line). The samples have been annealed at 680 °C for 1 h.

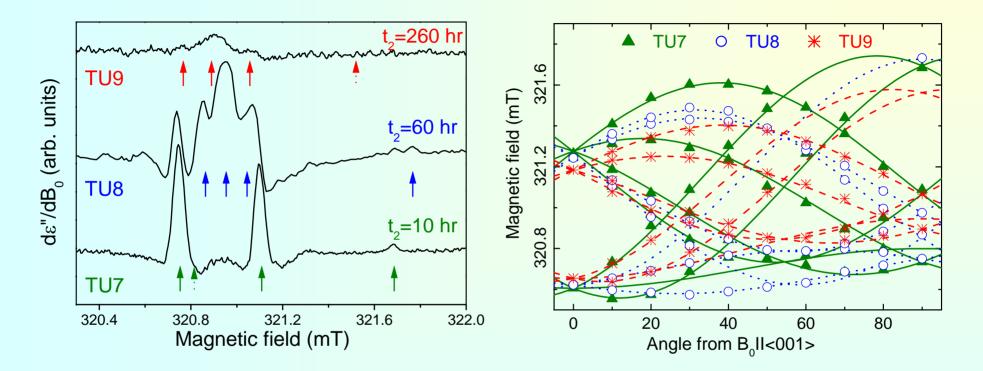
- High-dose implantation, >10¹³ Si/cm², and annealing at temperatures above 680°C causes the {311} extended defect formation.
- The {311} defect presence is detectable by both electrical (with a signature at E_V +0.5 eV) and optical (with a PL signal at 1376 nm) measurements.

J. L Benton, S. Libertino, S. Coffa, et. al.


RLD – {113} structural defects – EDSR

From dependencies of intensity and shape of the EDSR signals on temperature and MW power it was determined that:

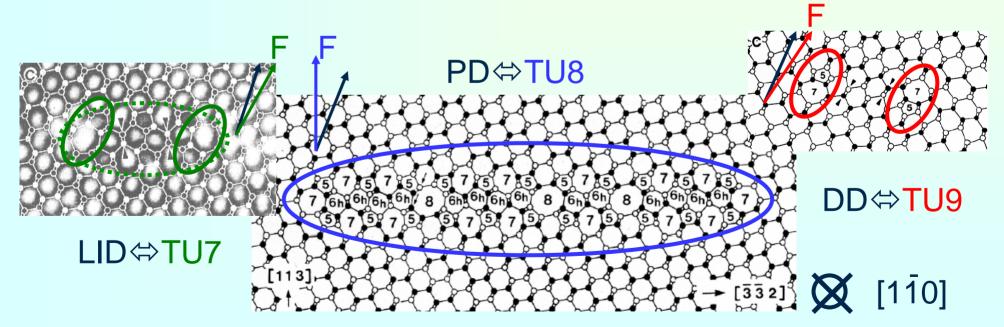
- Relatively deep quasi-one-dimensional energy band is associated with RLDs
- Localization length of electrons along RLDs is of 100 nm order.
- \bullet Electron mobility in the band at 10K is more than 500 cm²/V.
- T. Mchedlidze, et. al., Phys. Rev. B **50**, 1511 (1994).



- Phosphorus-doped Cz-Si crystals.
- Solution Initial resistivity of 0.8 Ω cm.
- Interstitial oxygen concentration of 25×10¹⁷ cm⁻³.
- Pre-annealing in evacuated quartz capsules at 450°C for 160 h.
- Subsequent annealing at 650°C for
 - 10 h (sample "S")

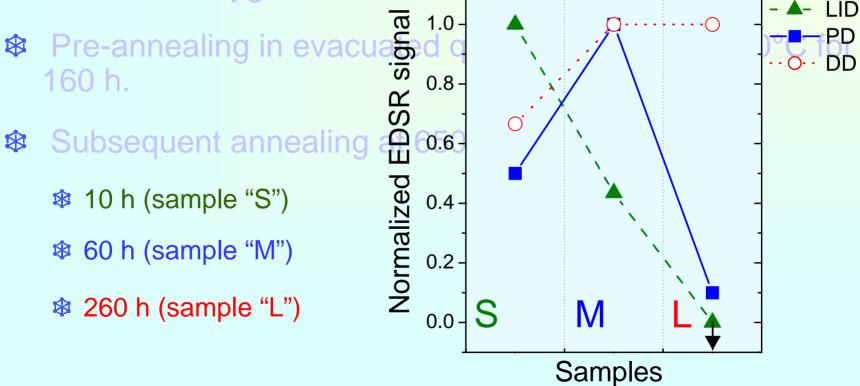
 - 260 h (sample "L")

Identification of EDSR signals from RLDs


Center	Spin	System	g ₁	g ₂	g ₃	θ	Defect
TU7	1/2	C _{1V}	2.0005	1.9946	2.0020	12	LID
TU8			1.9947	2.0005	2.0018	27	PD
TU9			1.9996	1.9957	2.0015	9	DD

IHP/BTU Jointlab, Cottbus, Germany

Identification of EDSR signals from RLDs



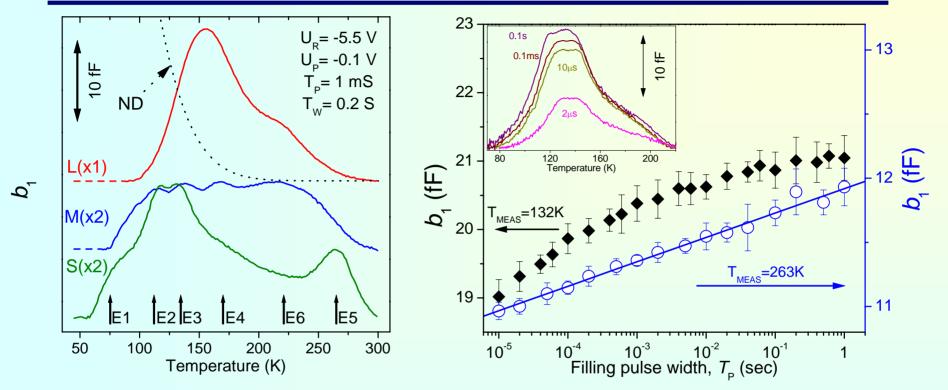
- Summetry of the TU7-TU9 centers fits that expected for the RLD structures. Moreover, the directions for the main axes of g tensors closely fits those expected for the RLD structures, i.e., ~[113] for PDs and ~[115] for LIDs and DDs.
- Formation kinetics for the EDSR signals and related RLD structures also well correlates.

Samples pre-characterized by EDSR

- Phosphorus-doped Cz-Si crystals.
- Initial resistivity of 0.8 Ωcm.
- Interstitial oxygen concentration of 25×10¹⁷ cm⁻³

Experimental

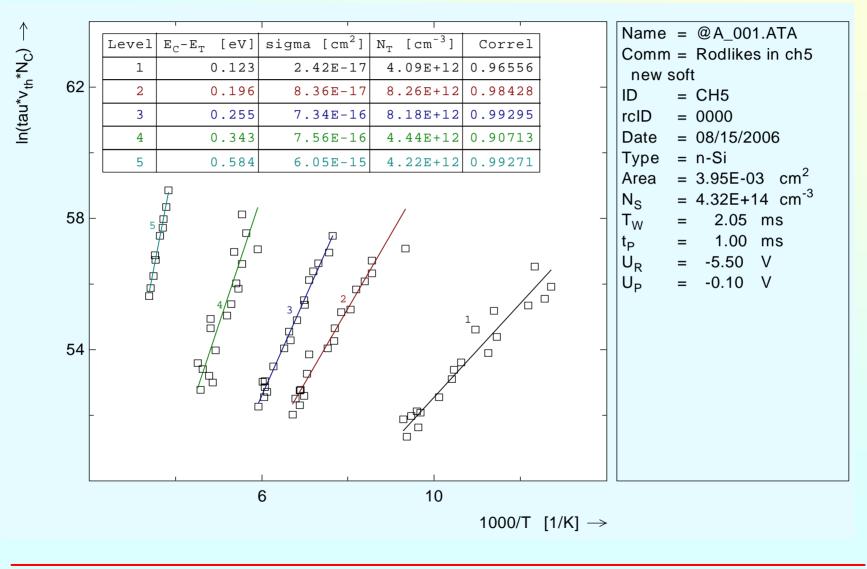
DLTS measurements:


- Au Schottky contacts, \emptyset 0.7 mm.
- Ohmic contacts: Galn alloy.
- Transient Fourier spectroscopy DL-8000 system (Accent). T_{MEAS}: 20 ÷ 300 K.
- Representative DLTS spectra change of b_1 Furrier coefficient with temperature (T_{MEAS}) and/or with sampling period (T_W).

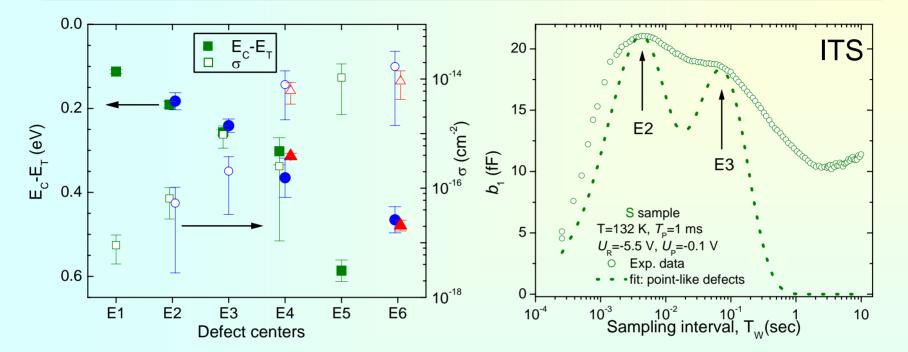
PL measurements:

- Excitation with Ar-ion laser:
 - λ = 454 nm
 - Power density: 10 ÷ 1000 W/cm²
- T_{MEAS}: 5 ÷ 300 K.
- PL system: monochromator \rightarrow N_2 cooled Ge-detector + laser-beam chopper and a lock-in system.
- Detection range 0.7-1.5 eV.

Results: DLTS

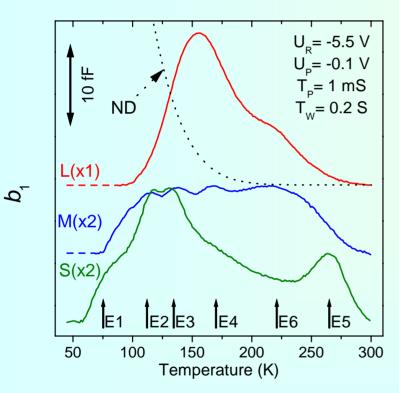


Character of defect states:


- E₂ & E₃ are extended defects with band-like states;
- E_{5 are} extended defects with localized states. E₄ & E₆ are extended defects;
- E₁ character of defects states couldn't be determined.

Results: DLTS: Arrhrenius plot (example)

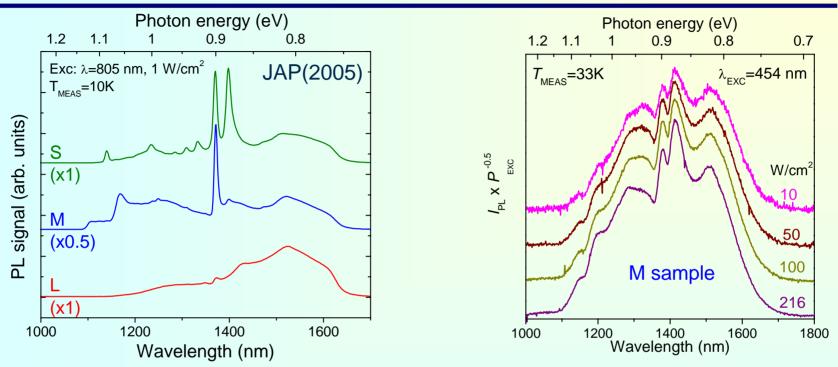
IHP/BTU Jointlab, Cottbus, Germany


Results: DLTS

- Scatter of E_c - E_T and σ parameters is related to extended character of states.
- Estimations of trap density is not valid; $E_C E_T$ and σ are only rough estimates.
- From Isothermal Transient Spectrum detected at 132K and from fitting of this spectrum with point-like defect model: $N(E_2) = N(E_3)$.

Results: DLTS

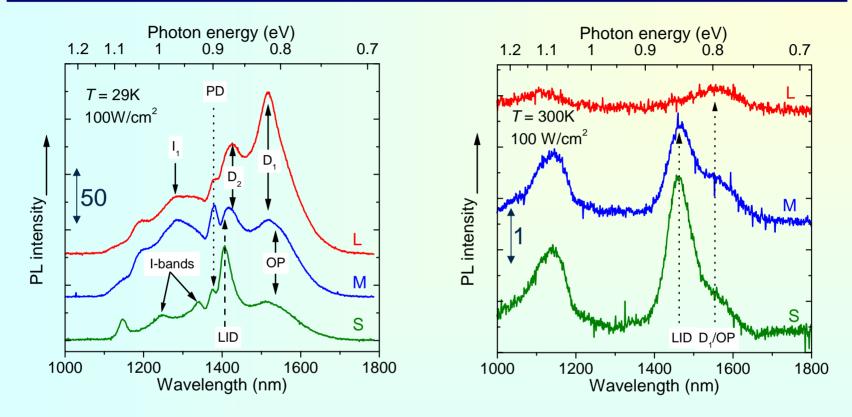
Attribution by change in signal intensity:


- E₂(~0.2 eV) & E₃(~0.25 eV) LID
- E₅(~0.59 eV) LID (?)
- E₄(~0.35 eV) DD
- E₆(~0.48 eV) PD
- E₁(~0.11 eV) ??

Attribution by character of states:

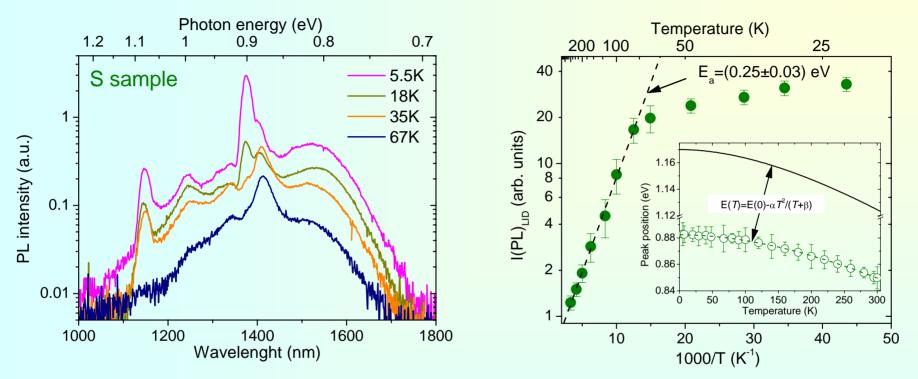
- E₂, E₃ LID, localized along defects
- $E_5 LID$, defects in structure or non-RLD
- $E_4 DD$, localized and band-like states
- $E_6 PD$, localized and band-like states
- E₁ non-RLD (?)

Results: PL



- Small power density was used previously to achieve maximal resolution.
- To excite possibly large number of transitions and suppress influence of variation in recombination cross-sections, possibly high power density should be used for excitation.
- Excess power density may cause loss of resolution and local heating.

Results: PL

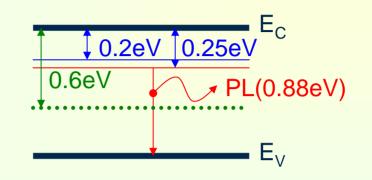


- For all T_{MEAS} the PL spectra for S, M and L samples differed significantly.
- Assignment of PL peaks was done according to EDSR results for samples and using published data for PL peaks.
- Temperature behavior of peaks was complex.

Results: PL

• Quenching of the LID peak intensity was observed from $T_{\text{MEAS}} \ge 70$ K. Activation energy of this process, $E_a \approx E_C - E_{\text{LID}}(\text{PL}) \approx 0.25 \text{eV}$

$E(T) = E(0) - \alpha T^2 / (T + \beta)$	<i>E</i> _T (0) (eV)	α (10 ⁻³ eV/K)	β(K)
Si band gap	1.17	4.7	636
LID	0.88	4.7	999


Summary

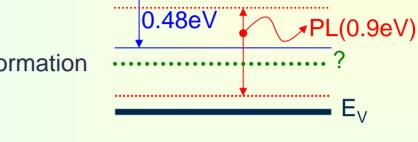
Line-interstitial defects:

- Appear at early stages of RLD formation
- They have extended band-like states

Optical signatures:

PL: PL peak at 1405nm (0.88eV) at He temperatures. Peak persists up to room temperature, energy of the PL peak is shifted to ~1458nm (0.85eV). This peak corresponds to band-edge transition and could be observed even at room temperature.

Electrical signatures:


DLTS: Pair of energy bands with similar density of states are positioned at ~0.2eV and ~0.25eV from the conduction band.

Possibly LID has also deep extended localized states located at ~0.6eV from conduction band. This states may be related to irregular parts of LIDs.

Summary

- Appear at intermediate stages of RLD formation
- They have extended band-like states

Optical signatures:

PL: Strong PL peak at 1372nm (0.9eV). At room temperature energy of PL peak is shifted to ~1458nm (0.85eV). Origin of this emission is unclear. The peak has strong temperature dependence: the intensity decreases more than 20 times when the T_{MFAS} changes from 5 to 35 K.

Electrical signatures:

DLTS: Energy band is positioned at ~0.48eV from the conduction band.

Possibly PD has also deep extended localized states. This states may be related to irregular parts of PDs.

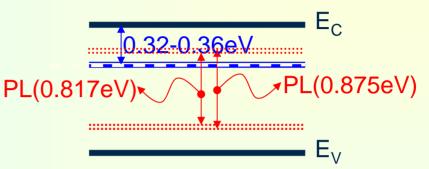
E

 E_{V}

© 2006 - All rights reserved

DLTS: The energy level (levels) for these defects are positioned at 0.32 – 0.36 eV below the conduction band.

PL: PL peaks positioned at 1426nm (D_2 , 0.875eV) and 1515nm (D_1 , 0.817eV). Origins of this emissions are unclear.


Optical signatures:

Electrical signatures:

Dislocation dipoles:

- Appear after dissociation of plane defects
- Extended localized (mostly) and band-like states

Summary

