

Pros for using MFIA in deep level transient spectroscopy studies

Teimuraz Mtchedlidze

www.teimuraz.net

Freiberg

- Implementation of the DLTS setup
- Standard measurements, comparison to HERA results
- Transient measurements under various settings
- Importance of the initial part of a transient
- Summary

Ţ

MFIA and HERA DLTS systems

MFIA based system

Zurich Instruments

PhysTech "HERA" DLTS system

Detection of transients using UI of MFIA

T=150K

Block diagram, measurement routine, data treatment 📮

Interface of the LabVIEW program

F

- Implementation of the DLTS setup
- Standard measurements, comparison to HERA results
- Transient measurements under various settings
- Importance of the initial part of a transient
- Summary

MFIA vs. HERA

F

Sample: B-doped ($N_a = 1 \times 10^{15}$ cm⁻³) FZ-Si sample contaminated by gold. Gold was introduced from the pre-deposited Au layer during 60 min annealing at 750°C in the Ar atmosphere.

TU Bergakademie Freiberg | Institut für Angewandte Physik | Teimuraz Mtchedlidze | "Pros for using MFIA in deep level transient spectroscopy studies"

Extracted trap parameters

TRAP	E _{na} , eV	σ _{na} , cm ⁻²	C _t , cm⁻³
Au(0/+) MFIA	0.34	6.2×10 ⁻¹⁴	9.8×10 ¹²
Au(0/+) HERA	0.334	7.5×10 ⁻¹⁴	8×10 ¹²
Au(0/+) ^[1]	0.34	6.2×10 ⁻¹⁴	(1×10 ¹³) ^[2]
DH6 MFIA	0.23	2×10 ⁻¹⁹	2.9×10 ¹³
DH6 HERA	0.33	3×10 ⁻¹⁶	1×10 ¹³
DH6 ^[3]	0.35	1.7×10 ⁻¹⁶	Unknown

- [1] K. Gwozdz, et al., JAP, **2018**, *124*, 015701.
- [2] N. Stolwijk, et al., Physica B, **1983**, *116*, 335.
- [3] V. Kveder, Et al., PSS(a), **1982**, 72, 701.

F

- Implementation of the DLTS setup
- Standard measurements, comparison to HERA results
- Transient measurements under various MFIA settings
- Importance of the initial part of a transient
- Summary

Transients under various MFIA settings

F

Variation of MFIA settings

Extracted trap parameters

Ţ

TRAP	E _{na} , eV	σ _{na} , cm ⁻²	C _t , cm⁻³
Au(0/+) MFIA	0.34	6.2×10 ⁻¹⁴	9.8×10 ¹²
Au(0/+) HERA	0.334	7.5×10 ⁻¹⁴	8×10 ¹²
DH6 MFIA (107 kHz)	0.23	1.9×10 ⁻¹⁹	2.7×10 ¹³
DH6 MFIA (54 kHz)	0.23	2×10 ⁻¹⁹	2.9×10 ¹³
DH6 MFIA (27 kHz)	0.25	5×10 ⁻¹⁹	3.1×10 ¹³
DH6 HERA	0.33	3×10 ⁻¹⁶	1×10 ¹³
DH6 [REF] ^[1]	0.35	1.7×10 ⁻¹⁶	Unknown

[1] V. Kveder, Et al., PSS(a), 1982, 72, 701.

Ę

- Implementation of the DLTS setup
- Standard measurements, comparison to HERA results
- Transient measurements under various settings
- Importance of the initial part of a transient
- Summary

TU Bergakademie Freiberg | Institut für Angewandte Physik | Teimuraz Mtchedlidze | "Pros for using MFIA in deep level transient spectroscopy studies"

D

Ę

Dependence of signals on filling pulse duration

Experimental setup with the external pulse generator Keysight 33500B

TU Bergakademie Freiberg | Institut für Angewandte Physik | Teimuraz Mtchedlidze | "Pros for using MFIA in deep level transient spectroscopy studies"

 τ_D = const.

Dependence of signals on filling pulse duration

F

T_{meas}=180 K 0.35 //····· - 0.7 0.30 - 0.6 0.25 - 0.5 $\Delta C_{Au}, \ pF$ $\Delta C_D, \ pF$ 0.20 - 0.4 0.3 0.15 - 0.2 0.10 DH6 - 0.1 Au(0/+)0.05 Fit: $\tau = (0.15 + 0.01) \mu s$ 0.0 0.00 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 0.02 0.04 0.06 0.08 0.10 t_p, s

Fitting for point defects, i.e., Au(0/+): $\Delta C(t_p) = \left[\frac{C_0 p_T(t_p)}{2N_D}\right] \left[\exp(-t_2 e_p) - \exp(-t_1 e_p)\right] =$ $= \Delta C_{MAX} \left[1 - \exp(-p \langle v_{th} \rangle \sigma_p t_p\right], \tau_p = 1/p \langle v_{th} \rangle \sigma_p$ [R. Wu and A.R. Peaker, Sol.St.Electr. 25(1982)643] [H. G. Grimmeiss and C. Ovren, J.Phys.E 14(1982)1032]

For extended defects, i.e., DH6, The DLTS peak amplitude increases linearly with the logarithm of the filling pulse duration (yellow dotted line in the figure).

[V. Kveder et al., PSSa 72(1982)701][T. Wosiński, J. Appl. Phys. 65(1989)1566]

- One can set up a DLTS system from scratch using MFIA from ZI in a couple of months.
- Above all, the system is revealing and instructive with powerful interface and a lot of possibilities. It even can be used to teach DLTS to students.
- The system allows measurements shortly after the filling pulse, minimizing the delay time used in the standard DLTS setups from 1-2 ms to 40-80 µs.
- The short delay time opens new possibilities for accurate measurements of trap signatures for defects with the strong temperature dependence of the carrier capture cross-section and defects with extended structure.
- New possibilities and higher precision can be achieved also for various types of transient measurement and evaluation, e.g. measurements of dependence on filling pulse duration, etc.

Acknowledgements

- We highly appreciate the help and support from the group of Prof. **Eduard Monakhov** (University of Oslo, Norway).
- Thanks are due to **Katrin Gwozdz** (Wroclaw University of Technology, Wroclaw, Poland) for supplying gold-contaminated silicon samples.
 - Thanks to the ZI team (T. Ashworth, K. Esat, and G. Ciardi) Zürich, Switzerland for their instant support.
- Thanks to **Thomas Behm, Alexander Schmid, and others** (IAP TUBAF, Freiberg Germany) for support and technical assistance.

teimuraz.net:

Materials of this study and, later, these slides can be found on my page at ResearchGate:

https://www.researchgate.net/profile/Teimuraz-Mchedlidze-2

Page on RG:

